"CHESSBOARD" DIFFERENCE METHOD OF SOLVING
A SYSTEM OF DIFFERENTIAL EQUATIONS OF HEAT
AND MASS TRANSFER

A. F. Klement'tev and O. N. Balykina UDC 536.242:532.542:518.1

An explicit, absolutely stable difference method of solving a system of differential equations of
heat and mass fransfer is proposed. Limits of applicability of the method are cstimated.

As we know [1], the system of differential equations of energy and mass transfer is written in the form

dv, dy . -
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where IIj is the amount of heat (substance) emitted by the sources in unit volume per unit time; Rjp are thermo-
physical transfer coefficients between which there is no reciprocity relation, Rj, = Ry i; U is the velocity vector;
v;j are the sought functions; V is the Hamilton operator.

Exact solution of the system (1) is difficult even for constant thermophysical characteristics. In [2, 3]
an explicit difference method was proposed for a simplified system, while in [4] it was proposed for the com-
plete system of equations (1). In [5] implicit difference schemes are set up for numerical solution of the prob-
lem of diffusion in a two-phase medium with a given intcrnal (moving) boundary of phase transformation.

In the present work we consider an explicit difference method which is absolutely stable for a certain
class of systems of the form (1).

We shall consider the one-dimensional problem for two substances of a fixed system with constant ther-
mophysical characteristics. Then, mathematically, the problem is formulated as follows: find the function of
concentration of two substances — the heat vi{x, t) and the mass u(x, t) — satisfying within the region {a <x=<b,
t=0} the system of equations

du %u 0%
o S -+ Rlza? ) (2)
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with the matrix [[Ripll, 1, n=1,2, being positive-definite. On the boundary I' of the region the conditions
wr =gy 1), tr =4, () (4)
are specified. ‘
At the instant of time t=0 the initial distributions of heat and mass are given:
tth=o = f, (x),
Uhrmo = f, (x).

We introduce the difference grid {tj =kr, k=0, 1, 2, ...; xj=a +jh, j=0, N, N=(b—a)/h} and denote the
approximate values of u and v at the point (xJ-, ty) by ug.{, vg.{, respectively. We divide the set of points of the

(5)
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TABLE 1. Calculation Parameters

. i [ 1 i i
Variants 1ol x 3 1 4 1 s } 6 Tlos s o}
t i | | P : |
Ru 5 05|61 313 |5 1i2]2 1 4 | 3
12 ] 0 0 0 3 1. 3 1 1 1 1
21 6 1610l 2|21 ]2 15| 3] 2] :2
Ry 5 415 | 3| 214 112 2| 2 1
i
. ! ] ' ’ | |
Variants I 12 i 13 | 14 j 15 | 16 l 17 18 19 20
. |
: ',:
Ru 3 3 | 2 4 5 1 4 {2 4] 3
Ry 1 I 1 1 1 o5/ 1 1 1 3
Ry 1,5 3 3 11 2 4 |1 1
2 2 2 2 2 2|2 |2 i 1| 3

grid into two subsets: points whose sum of indices j+k is even we call fexplicit," while points whose sum of
indices is odd we call "implicit.” It is obvious that each explicit point of the plane (%, t) is surrounded by im-
plicit points, and conversely.

At explicit points we calculate the system of equations (1) by means of the explicit difference scheme

k1

uit = Pi (1 —2ry)uf, T =QF +(1 —2ny) o},

P . & k
P? = 1y (U 1) + (Ve — 207),

Qf = ryy (U1 — 26}) + 19 V), (6)
”?:1 = ”?—;—1 + u?_l, Tin = 7:? Rin.
At impl'l;_cit E»{a_mts the calculation is carried out according to the implicit difference scheme extended
1 1,

relative to u;{ ' Vy

wfT = (14 2r) WP uf),
(7)

ot = (14 2 (@ ).

k+1

We shall calculate the values of the functions u:l"‘ , v%‘“ in a "chessboard® order: first, by the recursive

‘expressions (6) we find these values at explicit points. Then, substituting the values of heat and mass just
found at the explicit points of the (k+ 1)-th layer into the expressions (7), we find the sought values at the im-
plicit points.

It is natural to call the method described by the expressions (6) and (7) the "chesshoard" method [6, 7].
It approximates the system (1) with an error of the order O [h®+72+(r%/h?)].

We should note the following advantages of the "chessboard" difference method over the classical dif-
ference schemes.

1. A reduction of the amount of computations approximately 10-15 times in comparison with the explicit
difference scheme, and 2-3 times in comparison with the implicit difference scheme.

2. A reduction of the required volume of operative memory about 2 times.

3. The ease of application for complex problems. The "chessboard® without any alterations is trans-
ferred to the system (1) of any dimensionality with variable coefficients.

In the case of the dependence of the thermophysical characteristics on the sought functions, Egs. (6) and
(7) remain cxplicit if the arguments of the functions Ry, at implicit points are interpolated from explicit
points.

We proceed to discover the limits of applicability of the "chessboard™ method. The stability of the meth-
od on the set of implicit points gives rise to no doubts, and it remains for us to verify its stability on the set
of explicit points. '
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Excluding from Egs. (6) the values of unknown functions at implicit points by means of Egs. (7), it is
easy to show that the "chessboard™ method on the set of explicit points is equivalent to the difference scheme
of Dewfort—Frankel [8]

U = (1 + 2ry) H2ry (1) + (1 — 2r)) UF 4 2r g0y — 200)),

Ut = gk, (8)
UFT! == (1 2ry0) (20 (Wt — 20 ) + 21y (0Fa1) + (1 — 2, VE 1,
VAR ot

Substituting the Fourier integrals into (8), we obtain the transition matrix [8]

= .o l—a r =
2L x Lo —4-B(1—x% 9
1 ﬁl Bl
1 0 0 0
G= |
sty o0 9 % 2%
B, B. B2
.o 0 1 0

where we have denoted
o =2 Bi=14ay, i =1, 2; x=—cos#.
We know that [8] for the stability of the scheme (8) it is necessary and sufficient for the elements of the

matrix Glt, 6) to be uniformly bounded for all 0<t<T, || <7 and all eigenvalues Ay, of the matrix, with an ex-
ception, perhaps, of one (for example, [Aq| =1+0(r)) to lie strictly within a unit circle: |Apyl<1.

The characteristic equation for G has the form
F (1) = byA* + 0,33 = b2 4 b ) + b, = 0,
by=1+a +%, by = —x(p -+ 4a),
b= 212(—B) + 4x + % - — 1),

by = x (p — 4ax), b4=l+a—%,

P =2(a + &), a=oya, B=ry,.

Applying to the polynomial F(d), transformed by the substitution A=(u +1)/ (g —1), the Routh—Hurwitz
criterion, we find that the Hurwitz conditions are fulfilled for

a>fp, p>0, f=0. (9)

Thus the "chessboard® method on a set of explicit points is absolutely stable for systems (2), (3) for
which the first two conditions, obviously, are satisfied with respect to the physical sense of the problem. The
third condition considerably narrows the class of problems being considered. However, it is fulfilled in many
cases of practical importance [2, 3, 9-12].

Thus, when the conditions (9) are fulfilled, stability of this method holds for p-dimensional systems of
the form (2), (3), sincethe expressions (6), (7) preserve their form (only the numerical coefficients ofj}{, v}-‘ and in
P;{, Q?]{ are altered).

To verify the stability conditions, calculations of a series of systems (2), (3) were carried ouf on a
BESM-4 digital computer for the following values of parameters and boundary and initial conditions:

a=0,b=1,h=0,1, t=r f=f,=1,
u@©, ty=u(l, =0, v(0, f)==ov(l, {) = 0.

Out of the 20 values of Rj, presented in Table 1, the conditions (9) have been fulfilled only for the first
four variants. However, the calculations show that the "chessboard® scheme is absolutely stable for the vari-
ants 1-4, in the case 5 instability appears for r> 2, for 6-9 it appears for r> 1, for 10 it appears for r> 0.5, and
only for the variant 20 is the scheme absolutely unstable. In [4] results of investigating a classical explicit
scheme for the given problem for r=0.1 are presented; here instability was discovered for the variants 3-4,
6-7, 9, 16, 17, while by the "chessboard" scheme, for r= 0.1, only one variant does not pass.
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Thus, the limits of applicability for problems of heat and mass transfer of the "chessboard® method are
broader than follows from the stability conditions (9).

NOTATION

Rjp, thermophysical transfer coefficients; Ry4, coefficient of thermal diffusivity; Ry, diffusion coeffi-
cient; Ryy, mass diffusion coefficient; Ryq, thermal diffusion coefficient; v(x, t) heat function; u(x, t) mass
function; h, 7, grid pitches; u%-‘, Vj grid analogs of the functions u, v; G, transition matrix; Ay, eigenvalues of

the matrix G; F(\), characieristic polynomial of the matrix G.
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SOLUTION OF THE TWO-DIMENSIONAL UNSTEADY
DIFFUSION EQUATION FOR VORTEX FLOW

M. A. Puzrin, O. M. Todes, UDC 66.011:518.61
and M. Z. Fainitskii

A numerical method of solution based on the use of probability analogies is presented. An ex-
ample of a calculation by the scheme developed is given.

Solid particles in fluidized bed devices take part in both random and directed motions in the form of cir-
culating flows through the whole reactor (1, 2]. This circulation can be represented as a vortex superimposed
on the diffusion intermixing of the solid phase. The intermixing process must then be described by an inhomo-
geneous differential equation for diffusion in vortex flow. It is very difficult or impossible to obtain an analytic
solution of this equation. The method of finite differences is a universal method for obtaining approximate so-
lutions of differential equations and is applicable to a broad class of problems [3].
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